
PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

Audit Proposal

Submitted by: CertiK

Delivered on: 09/19/2023

Project Proposal: Security Audit

Prepared for: XinFin

PROPRIETARY AND CONFIDENTIAL

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

EXECUTIVE SUMMARY

XinFin is seeking a third party to evaluate the codebase security, and CertiK will review and
verify the project specifications and source code with a detailed focus on weaknesses,
potential vulnerabilities, and overall security. CertiK will also address its findings with solutions
that may mitigate future attacks or loopholes.

Project Background & Mission

CertiK’s mission of the audit is to apply different types of approaches and detections, ranging
from manual, static, and dynamic analysis, as well as formal verification, to ensure that XinFin is
checked against known attacks and potential vulnerabilities. A highlight of failures and security
issues include:

● Inconsistency between specification and implementation
● Flawed design, logic
● Reentrance, code injection, and Denial of Service attacks
● Limit exceeded on bytecode and gas usage
● Miner attacks on timestamp and ordering

CertiK leverages a team of seasoned engineers and security auditors to apply testing
methodologies and verifications on XinFin’s project, in turn creating a more secure and robust
software system.

CertiK has served more than 3,000 clients with high quality auditing and consulting services,
ranging from stablecoins such as Binance’s BGBP and Paxos Gold to decentralized oracles
such as Band Protocol and Tellor. CertiK customizes its engineering tool kits, while applying
cutting-edge research on smart contracts, for each client on its project to offer a high quality a
delivery. As XinFin utilizes technologies from blockchain and smart contracts, CertiK team will
continue to support the project as a service provider and collaborator.

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

DLT METHODOLOGY

At CertiK, we implement a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to prove the soundness of protocol design, enhance the
source code quality, and output sufficient remediations to the system. CertiK team utilizes the
following methodologies in the security audit process.

Expert Manual Review

By leveraging experts in security-oriented code review, we greatly reduce the chance that
potential bugs and vulnerabilities go undetected. This diligent review offers customized
detections and suggestions about high-level system design and protocol logics. Our team also
identifies areas where more defensive programming could be applied to reduce the risk of
mistakes and loopholes. In addition to focusing on the source code in scope, we also examine
code dependencies when they are relevant to the investigated area.

Automated Static Analysis

CertiK security engineers and researchers have put tremendous efforts into developing
automated static analysis toolkits that increase the chances of detecting flaws and critical
risks, including risks not easily detected by human efforts. Our approaches range from Syntax
Analysis, Semantics Analysis, Vulnerability Base Analysis (60,000+ findings database), Rule
Base Analysis (1,000+ rules), and Formal Verification, which mathematically proves the
correctness of core components. We customize the threat models and attack scenarios for
each project, then apply analytical examinations and investigations accordingly.

In-depth Documented Findings

The whole process of auditing is thorough, transparent, interactive, and accompanied with
milestone-driven preliminary comments/reports. Communication channels are opened between
the teams of engineers for fast collaboration, and upon client request, this communication may
be logged as well. All findings of the security analysis are fully documented with in-depth
reasoning and supporting materials like testing outputs or screenshots for demonstrative
purposes.

Interactive Dynamic Analysis

CertiK's security engineers and researchers have dedicated substantial efforts to crafting
interactive dynamic analysis toolkits. These toolkits significantly enhance the likelihood of
identifying vulnerabilities and critical risks, even those that might elude human inspection and
static analysis methods. Our methodology encompasses a spectrum of techniques, including
conventional unit and integration testing, advanced property-based fuzz testing, and
interactive examination. Each project benefits from a tailored threat model and attack scenario,
ensuring that our analytical scrutiny is precise and effective in uncovering potential issues.

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

DLT METHODOLOGY - continued

Expressive Correctness Specification

CertiK verification engineers and researchers will, based on the documentation and code,
create the formal specification of the artifacts to verify. The specification covers the security,
safety, and correctness properties of the code implementation w.r.t. the documented or
publicly stated invariants, assumptions, and guarantees. The specification can be written in
Separation Logic or in the Calculus of Inductive Constructions (a higher-order formal logic),
which gives expressive power that has been demonstrated to be adequate for handling
complex mathematical, financial, protocol, and systems code.

Trustworthy Machine-checked Verification

CertiK's verification engineers harness the power of our cutting-edge deductive formal
verification framework, Scivik, along with automation tools, to ensure the safety, correctness,
and security of code implementations in line with specifications. Our verification process is
entirely rigorous and machine-checked, effectively eradicating potential human errors in
proofs. Moreover, our CertiK team possesses an arsenal of broadly applicable specifications.
We not only apply these specifications as a foundation but also offer supplementary services
to tailor and refine specifications for each project. This ensures that our formal verification
aligns perfectly with the distinct threat models, attack scenarios, and desired properties of
each engagement.

Remediations and Recommendations

The primary objective is to offer the client with actionable items and upgrade suggestions from
our analysis and discovery. CertiK engineers, seasoned with general software engineering and
security experience, will try their best to outline or mitigate the vulnerabilities that may affect
the system as a whole. At the completion and delivery of the final report, all critical and
medium findings and recommendations should be resolved.

https://arxiv.org/pdf/2103.02209.pdf

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

Layer-1 Case Studies

Case 1: Sei Protocol Audit

CertiK performed a full security audits before Sei Mainnet launched, CertiK
identified (and confirmed by Sei) a Critical Issue where transaction validation
was missing for a specific data field from Sei’s unique gasless transaction
design.

● Allows an attacker to Launch a DoS attack on the Sei protocol.
● Result in a loss of funds from linked contracts managing this

transaction

Impacts:
With CertiK's guidance, Sei prevented potential attacks and secured multiple
dex contracts from fund losses. Sei has token CertiK advices to refine its
gasless feature design and will now charge extra for high data usage.

Conclusion:
Always validate user inputs to deter harmful actions. Also, ensure custom
transaction handlers are tested and aligned with existing standards.

Audit Report:
https://skynet.certik.com/projects/sei-protocol

Case 2: Finschia (formaly Line Blockchain) - LBN-SDK Audit
CertiK performed a full security audits before Sei Mainnet launched,
CertiK identified (and confirmed by Sei) a Critical Issue where
transaction validation was missing for a specific data field from Sei’s
unique gasless transaction design.

● Allows an attacker to Launch a DoS attack on the Sei protocol.
● Result in a loss of funds from linked contracts managing this

transaction

Impacts:
With CertiK's guidance, Sei prevented potential attacks and secured
multiple dex contracts from fund losses.
Sei has token CertiK advices to refine its gasless feature design and
will now charge extra for high data usage.

Conclusion:
Always validate user inputs to deter harmful actions. Also, ensure
custom transaction handlers are tested and aligned with existing
standards.

Audit Report:
https://skynet.certik.com/projects/finschia

https://skynet.certik.com/projects/sei-protocol
https://skynet.certik.com/projects/finschia

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

Layer-1 with Consensus Module Case Studies

Case 1: Finschia (formally Line Blockchain) Ostracon Audit
During the audits Ostracon Consensus Audit, CertiK identified (and
confirmed by LineCorp) that missing gas restriction on the transactions

● Allows an attacker to exhaust the mempool to perform the DoS
attack;

Additionally, CertiK identified (and confirmed by LineCorp) that there is a
design flow in the voter set election algorithm

● Allows the attackers to control the validators in the voter set and
eventually take over the consensus.

Impacts:
The client decided to work with CertiK to add the proper gas constraint to
the transactions and remove the voter set election algorithm.

Conclusion:
The transaction gas should always be properly charged to avoid DoS
attack and any modification to the Tendermint consensus algorithm
needs to be thoroughly tested.

Audit Report:
https://skynet.certik.com/projects/finschia

Case 2: Massa Protocol - Consensus Audit

CertiK performed a new designed Consensus Audit for Massa Protocol,
CertiK identified (and confirmed by Massa Lab) a Critical logical flaw in the
voter set election algorithm.

● This loophole provides a window for a minority group of validators to
control the voter set, enabling them to take control of the network
consensus and manipulate the entire system.

Impacts:
The implications of such a vulnerability are grave. An attacker gaining control
of the voter set disrupts the blockchain consensus, which can result in stalled
transactions or even double spends. Such a security breach would have a
profound effect on the network's integrity, operations, and reliability,
consequently reducing its overall value proposition.

Conclusion:
The identified consensus vulnerability poses a severe threats, If exploited, it
could enable a successful attack, leading to a complete takeover of the
blockchain. The client addressed and resolved before the mainnet launch.

Audit Report:
https://skynet.certik.com/projects/massa-labs

https://skynet.certik.com/projects/finschia
https://skynet.certik.com/projects/massa-labs

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

ZKP SECURITY ASSESSMENT CASE STUDIES
This case study examines the critical security analyses conducted on various zero knowledge protocols and
implementations, it illustrate common pitfalls and lessons learned for securely constructing zero knowledge
primitives.

Case 1: Critical Security Gap Unveiled: Counterfeit Proofs in
PLONK-based ZK Bridge Project

A security audit of a cross-chain bridge project using the
PLONK zero-knowledge proof revealed a critical
vulnerability. This flaw allows counterfeit proof creation,
bypassing verifier scrutiny. Originating from a misstep in
implementing the Fiat-Schamir transformation, a key part of
proof verification, the issue lies in the omission of a
Fiat-Schamir hash computation. Consequently, attackers
could manipulate public input values, leading to seemingly
legitimate but false verifications—a potent reminder of the
necessity for stringent security protocols.

Case 2: A ZK Rollup Project

CertiK conducted an audit for a cryptographic library that is used with Prover to create “circuits” for rollup
blocks on a layer 2 solution. These circuits are then used to make SNARK proofs. These proofs are then sent
to the smart contracts on the first layer.

The system uses cryptographic proofs made using zkSNARK, especially the Groth16 proving system. These
proofs check the correctness of each transaction within a block and make sure that any changes in the
block state are accurately shown.

The design of the block circuit is made specifically to make zkSNARK proofs using public inputs and block
witnesses. It’s crucial that the constraints of the circuit design match the witness generation process to
ensure they are equivalent. This match is key to make sure the zkSNARK proof is complete and sound.
During the audit, we focused mostly on whether the block execution program and the block circuit were
equivalent, and if the constraints were performed correctly. Below is a summary of situations where this
match could break:

● Incorrect Constraint: If the constraints is incorrectly added, then the zkSNARK proof generation
fails as the block witness will not make the circuit satisfiable.

● Missing Constraint: In the cases that a constraint is missing, then extra data could be injected into
the witness such that the generated proof does not change.

● Under-constraint: If the circuit is underconstrained, the block witness could possibly be modified in
such a way that the proof could still be generated. In other words, the proof could correspond to
multiple instances of witness.

● Lack of Overflow Check: The computation inside circuits are performed over a finite field, which
requires careful design to ensure that the passed witness does not exceed the modulus of the finite
field. Meanwhile, the intermediate witness should also not be within the modulus to align with the
computation inside the circuits.

● Optimization: A zkSNARK proof generation is extremely computationally intensive, a well designed
circuit should be reduced to avoid too much redundancy but achieve the same goal.

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

Security Research Case Studies

On 06/19/2023, CertiK identified (and confirmed by Sui) that Sui network is vulnerable to the “HamsterWheel
attack”

● Allows an attacker to bring down the whole SUI network and a simple reboot won’t recover the network
● Allows the attacker to block any new transactions submitted to the SUI network.
● SUI offered a half million dollar cash award bounty to CertiK for the finding.

Impacts:
CertiK helped SUI to fix the problem right after protocol mainnet launch.

Conclusion:
Layer one security feature (such as type safety) strongly relies on implementation correctness. Such
implementation needs careful review by security professionals.

Reference Articles:
The HamsterWheel: An In-Depth Exploration of a Novel Attack Vector on the Sui Blockchain

Case 8: SUI’ Blockchain HamsterWheel
Attack

An innovative form of attack leverages a
critical vulnerability to result in a
complete network shutdown of the Sui
blockchain

https://www.certik.com/resources/blog/3TuPZ1LnPTwkzXZQcEJ3aR-the-hamsterwheel-an-in-depth-exploration-of-a-novel-attack-vector-on-the-sui?utm_source=Twitter&utm_medium=Blog&utm_campaign=BugBounty&utm_id=SuiNetwork

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

REVIEW OBJECTIVES (Smart contract)

In order to analyze and detect potential vulnerabilities that could affect the project, CertiK
engineers will conduct technical due diligence to assess and verify the modules’ security
correctness of design and implementation. The following list of checkpoints is included as
reference:

Vulnerability Checkpoints

Arithmetic ● Integer underflow/overflow
● Floating Points and Precision

Access & Privilege
Control

● Administrative functionality for control and emergency handling
● Restriction access for sensitive functions and data
● Rate limit for critical operations, permission to contract state changes,

and delay operations for malicious/sensitive actions

Denial of Service ● Unexpected Revert
● Gas spent exceeds its limit on Contract via unbounded operations or

block stuffing

Miner Manipulation ● Block Number Dependence
● Timestamp Dependence
● Transaction Ordering Or Front-Running

External
Referencing

● Correct usage of the pull over push favor for external calls
● Correct usage of checks-effects-interactions pattern to minimize the

state changes after external contract or call referencing
● Avoid state changes after external calls
● Error handling and logging

Race Conditions ● Reentrancy - unexpected state changes when call.value()() occurs
● Cross-function racing - attacks that using different functions while

share the same state

Low-level Call ● Code Injection by delegatecall
● Unsuited adoption on assembly code

Visibility ● Specify the correct visibility of variables and functions

Incorrect Interface ● Ensure the defined function signatures match with the contract
interface and implementation

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCOPE OF ENGAGEMENT

CertiK will assess the following files based on client’s provided source code repository.

The audit process will utilize a mixture of expert manual review, static analysis, and dynamic
analysis techniques.

The engagement was scoped to provide a security assessment of the XDC 2.0 Release.
Repository: https://github.com/XinFinOrg/XDPoSChain
Commit Hash: 78d25c6e620160de303dff52b7a85503cb5a3222

● All the code developed between V1.1.0 and V1.4.8 under the XDPoSChain repo.

● Ensuring the BFT security properties (safety and liveness) are met.

● Checking code quality, robustness, and coverage against potential network failures or

security-threatening attacks.

Upon examining the XDPoSChain codebase, the audit can be segmented into chain and smart contract
in golang and solidity language scope:

● XDCx related logic

○ XDCx

○ XDCxDAO

○ XDCxlending

● Consensus

● Core

● Native Smart Contract

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCOPE OF ENGAGEMENT

XDCx (5863)

The XDCx folder contains all the core building blocks and logic that are specific to XDCx on
XDPoSChain. It provides the currency and transactional capabilities on top of the underlying
XDPoSChain platform.

Some key responsibilities of the XDCx folder:

● Implements the XDCx state transition logic, including executing transactions, updating
account balances, gas costs, etc.

● Manages the XDCx state trie, which stores account balances and contract storage.
● Implements the XDCx consensus rules and block validation logic.
● Provides APIs for sending XDCx transactions and querying XDCx state.
● Manages the XDCx transaction pool, pending transactions, and transaction ordering.
● Implements XDCx specific RPC APIs for wallet functionality, account management, etc.
● Contains XDCx specific configurations, parameters, fees, etc.

.
├── XDCx.go
├── api.go
├── order_processor.go
├── token.go
└── tradingstate
 ├── XDCx_trie.go
 ├── common.go
 ├── database.go
 ├── dump.go
 ├── encoding.go
 ├── epochpriceitem.go
 ├── journal.go
 ├── managed_state.go
 ├── orderitem.go
 ├── relayer_state.go
 ├── settle_balance.go
 ├── state_lendingbook.go
 ├── state_liquidationprice.go
 ├── state_orderItem.go
 ├── state_orderList.go
 ├── state_orderbook.go
 ├── statedb.go
 └── trade.go

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCOPE OF ENGAGEMENT

XDCxDAO (991)

The XDCxDAO abstracts away the underlying database implementation details and provides a
consistent API for the rest of the XDCx code to work with the database. It handles performance
optimization and translates between the database representations.

Some key responsibilities of the XDCxDAO include:

● Define interfaces for interacting with the XDCx database, including basic CRUD operations. The

main interface is XDCXDAO.

● Provide concrete implementations of these interfaces for different database backends:

○ BatchDatabase - uses LevelDB for storage, provides put/get/delete methods

○ MongoDatabase - uses MongoDB, provides object storage methods

● Handle caching and batching to improve performance.

● Encapsulate the differences between the database backends behind a common interface.

● Manage connections and provide a common way to access the XDCx data layer across the

codebase.

.
├── interfaces.go
├── leveldb.go
└── mongodb.go

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCOPE OF ENGAGEMENT

XDCxlending (5863)

The XDCxlending contains core lending logic and state for XDC, enabling lending functionality
like creating orders, matching trades, tracking balances, and processing actions like
repayments.

Some key responsibilities of the XDCxlending include:

● Manage lending order books, identified by the lending token and term. The

GetLendingOrderBookHash function generates the order book hash.

● Track lending trades, which represent an individual lending transaction between a borrower and

lender. The lending state database stores and retrieves these trades.

● Verify token balances when processing lending operations like top-ups, repayments, etc. The

VerifyBalance function does these checks before allowing lending actions.

● Calculate repayment amounts based on lending terms like interest rate and liquidation time.

● Handle limit and market lending orders, with logic differing for the investing and borrowing sides.

.
├── XDCxlending.go
├── api.go
├── lendingstate
│ ├── XDCx_trie.go
│ ├── common.go
│ ├── database.go
│ ├── dump.go
│ ├── journal.go
│ ├── lendingcontract.go
│ ├── lendingitem.go
│ ├── managed_state.go
│ ├── relayer.go
│ ├── settle_balance.go
│ ├── state_itemList.go
│ ├── state_lendingbook.go
│ ├── state_lendingitem.go
│ ├── state_lendingtrade.go
│ ├── state_liquidationtime.go
│ ├── statedb.go
│ └── trade.go
└── order_processor.go

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCOPE OF ENGAGEMENT

Consensus (4309)

The consensus folder implements the core consensus mechanisms that allow nodes in the
Ethereum network to securely collaborate and maintain a decentralized blockchain. The choice
of consensus algorithm is foundational to the security, scalability and decentralization
properties of a blockchain.

Some key responsibilities of the consensus include:

● XDPoS - Implementation of XinFin's XDPoS (XinFin Delegated Proof of Stake) consensus

algorithm.

○ It is split into two main engines:

■ engine_v1 contains the implementation for XDPoS v1.

■ engine_v2 contains the implementation for XDPoS v2. This added improvements

like dynamic validator set, slashing, and faster block times.

● Clique - Implementation of the Clique proof-of-authority consensus algorithm.

● Ethash - Implementation of the Ethash proof-of-work consensus algorithm.

● Containing utilities and common modules used by multiple consensus implementations like the

misc package.Allowing the Ethereum node software to pluggable swap consensus algorithms

based on config parameters. The consensus.go file handles this.

.
├── XDPoS
│ ├── XDPoS.go
│ ├── api.go
│ ├── engines
│ │ ├── engine_v1/*
│ │ └── engine_v2/*
│ └── utils/*
├── clique
│ ├── api.go
│ ├── clique.go
│ └── snapshot.go
├── consensus.go
├── errors.go
├── ethash
│ ├── algorithm.go
│ ├── consensus.go
│ ├── ethash.go
│ └── sealer.go
├── misc
│ ├── dao.go
│ └── forks.go

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCOPE OF ENGAGEMENT

Core (20322 12 days + privacy 14 days)
● Implementing the consensus rules and logic like validating blocks and transactions.
● Defining the data structures and types used in XDxcPOSChain like blocks, transactions, receipts,

accounts etc.
● Managing the state tree and state transitions. The state folder contains the state database and

all associated logic.
● Implementing the Ethereum fork Virtual Machine (EVM) which handles execution of smart

contracts.
● Networking logic for node discovery and communication using the devp2p stack.
● APIs and utilities used by other Ethereum modules and applications.

● Privacy: a new zero-knowledge proof protocol for proving that a secret committed value lies in a
given range. (paper, LoC 2000, 14 days)

○ https://github.com/XinFinOrg/XDPoSChain/blob/master/core/vm/privacy/bulletproof.go
○ During review, we'll examine these hypotheses:

■ Cryptographic threats like advances in discrete log, quantum computing,
vulnerabilities like frozen heart in Fiat-Shamir transform, or inconcise in
implementations.

■ Implementation issues like incorrect parameters, timing attacks, side channel
attacks, and numeric stability problems.

■ Ring Signature:
● Check signature verification and anonymity guarantees
● Ensure security against revealing actual signer

├── state
│ ├── database.go
│ ├── dump.go
│ ├── iterator.go
│ ├── journal.go
│ ├── managed_state.go
│ ├── state_object.go
│ ├── state_reader.go
│ ├── statedb.go
│ ├── statedb_utils.go
│ ├── sync.go
│ └── trc21_reader.go
├── state_processor.go
├── state_transition.go
├── token_validator.go
├── tx_journal.go
├── tx_list.go
├── tx_pool.go
├── types
│ ├── block.go
│ ├── bloom9.go
│ ├── consensus_v2.go
│ ├── derive_sha.go
│ ├── forensics.go
│ ├── gen_header_json.go
│ ├── gen_log_json.go
│ ├── gen_receipt_json.go
│ ├── gen_tx_json.go
│ ├── lending_signing.go
│ ├── lending_transaction.go
│ ├── log.go
│ ├── order_signing.go

│ ├── order_transaction.go
│ ├── receipt.go
│ ├── transaction.go
│ └── transaction_signing.go
├── types.go
└── vm
├── XDCx_price.go
├── analysis.go
├── common.go
├── contract.go
├── contracts.go
├── doc.go
├── eips.go
├── errors.go
├── evm.go
├── gas.go
├── gas_table.go
├── gen_structlog.go
├── instructions.go
├── int_pool_verifier.go
├── int_pool_verifier_empty.go
├── interface.go
├── interpreter.go
├── intpool.go
├── jump_table.go
├── logger.go
├── logger_json.go
├── memory.go
├── memory_table.go
├── opcodes.go

├── privacy
│ ├── bulletproof.go
│ └── ringct.go
├── runtime
│ ├── doc.go
│ ├── env.go
│ ├── fuzz.go
│ └── runtime.go
├── stack.go
└── stack_table.go

├── asm
│ ├── asm.go
│ ├── compiler.go
│ └── lexer.go
├── block_validator.go
├── blockchain.go
├── blocks.go
├── bloombits
│ ├── doc.go
│ ├── generator.go
│ ├── matcher.go
│ └── scheduler.go
├── chain_indexer.go
├── chain_makers.go
├── database_util.go
├── error.go
├── events.go
├── evm.go
├── gaspool.go
├── gen_genesis.go
├── gen_genesis_account.go
├── genesis.go
├── genesis_alloc.go
├── headerchain.go
├── lending_pool.go
├── lending_tx_journal.go
├── lending_tx_list.go
├── mkalloc.go
├── order_pool.go
├── order_tx_journal.go
├── order_tx_list.go
├── rawdb/x

https://eprint.iacr.org/2017/1066.pdf
https://github.com/XinFinOrg/XDPoSChain/blob/master/core/vm/privacy/bulletproof.go

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCOPE OF ENGAGEMENT

Solidity: Native Smart Contracts (2199)

The contracts folder contains all the Solidity smart contract source code for the XinFin XDPoSChain
project. It is organized into subdirectories for each main contract system or application.

The key responsibilities of the contracts folder are:

● Implement core protocol functionality like accounts, transactions, consensus, etc.
● Implement decentralized applications like token contracts, name/identity registration, random

number generation, etc.
● Provide libraries and utilities that are reused across multiple contracts.
● Define interfaces, inheritance structures and overall architecture for XinFin's smart contract

ecosystem.

.
├── XDCx
│ ├── contract
│ │ ├── LendingRegistration.sol
│ │ ├── Registration.sol
│ │ ├── SafeMath.sol
│ │ ├── TRC21.sol
│ │ ├── TRC21Issuer.sol
│ │ ├── XDCXListing.sol
│ │ └── XDCXPrice.sol
├── blocksigner
│ └── contract
│ ├── BlockSigner.sol
│ └── libs
│ └── SafeMath.sol
├── chequebook
│ └── contract
│ ├── chequebook.sol
│ ├── mortal.sol
│ └── owned.sol
├── ens
│ └── contract
│ ├── AbstractENS.sol
│ ├── ENS.sol
│ ├── FIFSRegistrar.sol
│ └── PublicResolver.sol
├── multisigwallet
│ └── contract
│ └── MultiSigWallet.sol
├── randomize
│ └── contract
│ ├── XDCRandomize.sol
│ └── libs
│ └── SafeMath.sol

├── solidity_0.6
│ ├── abstract.sol
│ ├── array_resizing.sol
│ ├── fallback.sol
│ ├── overriding.sol
│ ├── receive.sol
│ ├── state_variable_shadowing_disabled.sol
│ └── trycatch.sol
├── tests
│ └── contract
│ ├── Inherited.sol
│ └── libs
│ └── SafeMath.sol
├── trc21issuer
│ ├── contract
│ │ ├── TRC21.sol
│ │ ├── TRC21Issuer.sol
│ │ └── libs
│ │ └── SafeMath.sol
│ └── simulation
│ ├── deploy
│ └── test
└── validator
 └── contract
 ├── XDCValidator.sol
 └── libs
 └── SafeMath.sol

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCHEDULING

After a thorough review from our engineering team of all provided materials, the price quote of
this audit request is as follows. The price quote is based on the scope of work, date of
completion, and resource allocation required.

1. Golang: XDCx related logic (XDCx, XDCxDAO, XDCxlending)

Days Allocated 17 business days

Start Date (upon receipt of
payment)

September 20th, 2023

Prelim. Report Delivery Date October 12th, 2023

Resource Allocation 2 Golang Blockchain Security Experts

Final Price $68,000

2. Golang: Consensus

Days Allocated 15 business days

Start Date (upon receipt of
payment)

September 20th, 2023

Prelim. Report Delivery Date October 10th, 2023

Resource Allocation 2 Golang Blockchain Security Experts with Consensus
Experience

Final Price $60,000

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCHEDULING

After a thorough review from our engineering team of all provided materials, the price quote of
this audit request is as follows. The price quote is based on the scope of work, date of
completion, and resource allocation required.

3. Golang: Core + other modules

Days Allocated 20 business days

Start Date (upon receipt of
payment)

October 10th, 2023

Prelim. Report Delivery Date November 6th, 2023

Resource Allocation 2 Golang Blockchain Security Experts

Final Price $80,000

4. Golang: Core/privacy modules (ZK)

Days Allocated 14 business days

Start Date (upon receipt of
payment)

November 7th, 202

Prelim. Report Delivery Date November 24th, 2023

Resource Allocation 2 Golang Blockchain Security Experts with ZK experience
● 2 Math PHD

Final Price $56,000

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

SCHEDULING

After a thorough review from our engineering team of all provided materials, the price quote of
this audit request is as follows. The price quote is based on the scope of work, date of
completion, and resource allocation required.

5. Solidity: Native Smart Contracts

Days Allocated 6 business days

Start Date (upon receipt of
payment)

October 10th, 2023

Prelim. Report Delivery Date October 17th, 2023

Resource Allocation 2 Solidity Security Experts

Final Price $24,000

6. Security Package

Deliverables ● Skynet Smart Contract Monitoring
● KYC
● Contract Verification
● Bug Bounty Set up

Final Price $13,000

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

Package Options Offering

Item Modules Time Price

1. Golang: XDCx related logic (XDCx, XDCxDAO,
XDCxlending)

17 days $68,000.00

2. Golang: Consensus 15 days $60,000.00

3.
(**)

Golang: Core + Other Modules 20 days $80,000.00

Golang: Core/privacy 14 days $56,000.00

4 Solidity: Native Smart Contracts 6 days $24,000.00

5 Security Package $13,000.00

(**): We suggest assessing the Core module in conjunction with both the Core + Other modules and the
Core/Privacy module.

Overview
Understanding that each customer has unique needs and constraints, we have developed a

flexible Package Options Offering for XDPoSChain security assessment services. This

approach allows clients to select only the critical components that need an in-depth security

review. This way, you have the freedom to tailor your security assessment package based on

what you can afford and what you deem most critical.

Our Package Options Offering gives you the flexibility to receive a security assessment that

aligns with your financial and temporal constraints, without compromising the quality of the

service delivered. This customer-centric approach ensures you getting exactly what you need

based on your constraints.

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

WORKFLOW AND DELIVERABLES

As the leading security service provider in the industry, the CertiK team workflow prioritizes a
high quality service and an excellent customer experience.

Initial & Kick-Off Meetings with CertiK

● Bilaterally agree upon preferred communication channels, auditing goals, and action
items regarding: Infrastructure, product design, ecosystems, economy model, and
broader cybersecurity plans

Information Gathering, Project Research, Audit Planning, and Executions

● With all documents relevant to the client’s project, perform an in-depth review,
formalizing structures and plans by decomposing into smaller, auditable pieces

● Conduct the assessments based upon different approaches and methodologies,
including manual, static, and dynamic analyses that are feasible for the corresponding
project

Preliminary Reports

● Deliver preliminary (or weekly) reports to highlight
findings/vulnerabilities/recommendations that could help the client utilize the results
and address patches or updates quickly (Remediation Window)

Re-Audits

● Re-audit the design and the code changes implemented after the assessment period,
holding engineering meetings, if necessary, for further discussions

Further Iterations

● Repeat the steps above to improve the code quality until acceptable security
confidence is reached

Final Report

● Deliver a comprehensive report that includes all the details and practices of the audit
project, which may serve as a certificate for cryptocurrency exchanges or a technical
document for the client’s engineering team to utilize as a reference

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

WORKFLOW AND DELIVERABLES

CertiK actively engages with clients by presenting outputs that help clients detect potential
vulnerabilities and improve the overall engineering quality. To highlight the auditing
deliverables:

CertiK actively engages with clients by presenting outputs that help clients detect potential
vulnerabilities and improve the overall engineering quality. To highlight the auditing
deliverables:

Communication Channels

● Real-time discussions and interactions via platforms like Slack, Telegram, and email

Dedicated Engineering Hours

● Standby around the clock to collaborate with the client’s team about security-focused
tech stacks, as well as general engineering practices that may help improve the overall
quality of the project

Audit Reports

● Comprehensive list of vulnerabilities with detailed explanations to identify and resolve
the issues

● Supporting materials for full transparency and understanding, including scripts or
artifacts that CertiK leveraged to reproduce bugs and outputs

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

WHY CERTIK?

CertiK leads blockchain and smart contract security by pioneering the use of cutting-edge
technologies, including static/dynamic analysis and Formal Verification. Auditing is among one
of the premium solutions that CertiK offers to its clients in its mission to verify and ensure the
correctness and security of software. CertiK also contributes to the technical communities and
ecosystems by providing guidance, research, and advisory about blockchain and smart
contract best practices. To date, CertiK has served more than 700 clients and secured over
$30B in digital assets across all major protocols.

CertiK was founded by Computer Science professors from Yale University and Columbia
University, with its technologies derived from years of research in academia. CertiK is backed
by notable investors including Coatue, AptosLabs Ventures, Binance, Lightspeed Venture
Partners, Shunwei Capital, and IDG. Additionally, CertiK has received grants from IBM, the
Qtum Foundation, and the Ethereum Foundation to support its research of improving security
across the blockchain industry.

Trusted by the leading clients

https://www.certik.com/
https://twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

PROPRIETARY AND CONFIDENTIAL

AUDIT PROPOSAL CERTIK

